

An Example • A Medical Supply company supplies packets containing drugs & other medical products • It has three production plants at Dehradun, Haridwar & Gurgaon. • It has four distribution warehouses at New Delhi, Mumbai, Kolkata & Chennai. • The packets are distributed directly to warehouses from the plants. • The table on the next slide shows the costs per pack to ship to the four warehouses.

From Plant TO WAREHOUSE Plant D N M K C Capaci D 10 27 32 40 400 H 15 22 28 36 300 G 05 18 25 30 500	Con	tinue _	ed			
Plant N M K C Capaci D 10 27 32 40 400 H 15 22 28 36 300	From	7	ΓΟ WAR	EHOUS	E	Plant
H 15 22 28 36 300	Plant	N	M	K	C	Capacity
	D	10	27	32	40	400
G 05 18 25 30 500	Н	15	22	28	36	300
	G	05	18	25	30	500
Warehouse Demand 375 250 350 225 1200		375	250	350	225	1200

Assumptions in TP 1. The per item shipping cost remains constant, regardless of the number of units shipped. 2. All the shipping from the sources to the destinations occur simultaneously. No waiting is allowed. 3. The total supply is equal to the total demand.

Mathematical Model
Define c_{ij} as the cost to ship one unit from supply origin *i* to demand destination *j*.
Demand at location *j* is D_j.
Supply at origin *i* is S_i
x_{ij} is the quantity shipped from supply origin *i* to demand destination *j*.

Mathematical Model: TP as an LPP

$$\min: \sum_{i=1}^m \sum_{j=1}^n c_{ij} x_{ij}$$

s.t.
$$\sum_{i=1}^{n} x_{ij} = S_i$$
, for $i = 1, ..., n$

s.t.
$$\sum_{j=1}^{n} x_{ij} = S_{i}, \quad \text{for } i = 1, \dots, m$$

$$\sum_{i=1}^{m} x_{ij} = D_{j}, \quad \text{for } j = 1, \dots, n$$

$$x_{ij} \ge 0, \quad \text{for all } i, j$$

An Important Result

 In a TP, the basic feasible solution will contain at most (m + n - 1) positive variables.

Methods for Solving TP

- North West Corner Method
- Least Cost Method
- VAM Method

How to solve a TP?

- Define the objective function to be minimized.
- Set up a transportation table with *m* rows representing the supply origins and n columns representing the demand destinations.
- 3. Develop an initial feasible solution to the problem by any of these methods
 - (a) The North west corner rule
 - (b) Lowest cost entry method
 - (c) Vogel's approximation method.

Continued...

- 4. Examine whether the initial solution is feasible or not (if the solution has allocations in (m+n-1) cells with independent positions).
- 5. Test whether the solution obtained in the above step is optimum or not.
- 6. If the solution is not optimum, modify the shipping schedule. Repeat the above until an optimum solution is obtained.

North-West Corner Method

- Select the northwest corner cell of the transportation table and allocate as many units as possible [minimum between available supply and demand requirements i.e., (min (S_1, D_1)].
- Adjust the supply and demand numbers in the respective rows and columns allocation.
- If the supply for the first row is exhausted, then move down to the first cell in the second row and first column and go to step 2.
- If the demand for the first column is satisfied, then move horizontally to the next cell in the second column and first row and go to step 2.

Northwest Corner Method								
	Capacity	D_4	D_3	D_2	D_1	To From		
	100	21	3	7	19	S_1		
	300	6	18	21	15	S_2		
	200	22	15	14	11	S ₃		
	600	150	200	100	150	Demand		

To From	D_1	D_2	D ₃	D_4	Capacity
S_1	19	7	3	21	100
S ₂	15	21	18	6	300
S ₃	11	14	15	22	200
Demand	150	100	200	150	600

Start in the upper left-hand corner, "northwest corner" of the schedule and place the largest amount of capacity and demand available in that cell.

To From	D_1	D_2	D_3	D_4	Capacity
S_1	100	7	3	21	100
S_2	50	21	18	6	300
S_3	11	14	15	22	200
Demand	150	100	200	150	600

Since capacity of S_1 is exhausted, move down to repeat the process for the S_2 to D_1 cell. S_2 has sufficient capacity but D_1 can only take 50 packs.

To From	D_1	D_2	D_3	D_4	Capacity
S ₁	19	7	3	21	100
S_2	15	21	150	6	300
S_3	11	14	15	150 22	200
Demand	150	100	200	150	600

Now move to the next cells to the right and assign capacity for S_2 to demand until depleted. Then move down to the S_3 row and repeat the process.

4

