Transportation Problems

RK Jana

- What is a TP?
- Main Concept of TP
- Solution Methods
- North West Corner Method
- Least Cost Method
- VAm Method
- Special Cases of TP
- Numerical Examples

Network Representation of TP

Continued...

From Plant	TO WAREHOUSE				
	N	M	K	C	
Capacity					
D	10	27	32	40	400
H	15	22	28	36	300
G	05	18	25	30	500
Warehouse Demand	375	250	350	225	1200

Definition

The problem deals with transporting a product manufactured at different plants/factories, known as supply origins, to a number of different warehouses, known as demand destinations. The objective is to satisfy the destination requirements at the minimum transportation cost.

Main Concept

- Inputs
- Availability at sources
- Requirement at destinations
- Unit transportation cost from various sources to destinations
- Objective

To determine transportation schedule to minimize total transportation cost

Assumptions in TP

1. The per item shipping cost remains constant, regardless of the number of units shipped.
2. All the shipping from the sources to the destinations occur simultaneously. No waiting is allowed.
3. The total supply is equal to the total demand.

Mathematical Model

- Define $c_{i j}$ as the cost to ship one unit from supply origin i to demand destination j.
- Demand at location j is D_{j}.
- Supply at origin i is S_{i}
- $x_{i j}$ is the quantity shipped from supply origin i to demand destination j.

Mathematical Model:
 TP as an LPP

m in : $\sum_{i=1}^{m} \sum_{j=1}^{n} c_{i j} x_{i j}$
s.t. $\quad \sum_{j=1}^{n} x_{i j}=S_{i}, \quad$ for $i=1, \ldots, m$
$\sum_{i=1}^{m} x_{i j}=D_{j}, \quad$ for $j=1, \ldots, n$
$x_{i j} \geq 0, \quad$ for all i, j

Methods for Solving TP

- North West Corner Method
- Least Cost Method
- VAM Method

1. Define the objective function to be minimized.
2. Set up a transportation table with m rows representing the supply origins and n columns representing the demand destinations.
3. Develop an initial feasible solution to the problem by any of these methods
(a) The North west corner rule
(b) Lowest cost entry method
(c) Vogel's approximation method.

How to solve a TP?

In a TP, the basic feasible solution will contain at most ($m+n-1$) positive variables.

An Important Result

Continued...

5. If for any cell, supply equals demand, then the next allocation can be made in cell either in the next row or column.
6. Continue the procedure until the total available quantity is fully allocated to the cells as required.

Advantages: It is simple and reliable. Easy to compute, understand and interpret.
Disadvantages: This method does not take into considerations the shipping cost, consequently the initial solution obtained by this method require improvement.

Northwest Corner Method

From $^{\text {To }}$	D_{1}	D_{2}	D_{3}	D_{4}	Capacity
S_{1}	$\boxed{19}$	$\boxed{7}$	$\boxed{3}$	21	100
$\mathrm{~S}_{2}$	$\boxed{15}$	21	18	$\boxed{ }$	300
$\mathrm{~S}_{3}$	$\boxed{11}$	$\boxed{14}$	$\boxed{15}$	22	200
Demand	150	100	200	150	600

	D_{1}	D_{2}	D_{3}	D_{4}	Capacity
S_{1}	100	7	3	21	100
S_{2}	15	21	18	6	300
S_{3}	11	14	15	22	200
Demand	150	100	200	150	600

Start in the upper left-hand corner, "northwest corner" of the schedule and place the largest amount of capacity and demand available in that cell.

	D_{1}	D_{2}	D_{3}	D_{4}	Capacity
S_{1}		7	3	21	100
S_{2}		21	18	6	300
S_{3}	11	14	15	22	200
Demand	150	100	200	150	600

Since capacity of S_{1} is exhausted, move down to repeat the process for the S_{2} to D_{1} cell. S_{2} has sufficient capacity but D_{1} can only take $\mathbf{5 0}$ packs.

	D_{1}	D_{2}	D_{3}	D_{4}	Capacity
S_{1}	100	7	3	21	100
S_{2}	$50 \cdots$	$\begin{array}{r} 100 \cdots \\ 21 \\ \hline \end{array}$	150 \square	6	300
S_{3}	11	14	$\begin{array}{r} \text { 50 } \\ \hline 15 \\ \hline \end{array}$	150	200
Demand	150	100	200	150	600

Now move to the next cells to the right and assign capacity for S_{2} to demand until depleted. Then move down to the S_{3} row and repeat the process.

Example 1

Obtain initial solution of the following transportation problem by using Northwest corner rule method

To From	D_{1}	D_{2}	D_{3}	D_{4}	Supply
O_{1}	1	2	1	4	$\mathbf{3 0}$
O_{2}	3	3	2	1	50
O_{3}	4	2	5	9	$\mathbf{2 0}$
Demand	$\mathbf{2 0}$	$\mathbf{4 0}$	$\mathbf{3 0}$	$\mathbf{1 0}$	

Continued...

To From	D_{1}	D_{2}	D_{3}	D_{4}	Supply	
O_{1}	20	20	10	2	1	4
O_{2}	3	30	3	20	2	1
O_{3}	4	2	10	50		
Demand	$\mathbf{2 0}$	$\mathbf{4 0}$	$\mathbf{3 0}$	$\mathbf{1 0} 9$	$\mathbf{1 0}$	

Example 2

Obtain initial solution in the following transportation problem by using Least Cost method

To From	D_{1}	D_{2}	D_{3}	D_{4}	Supply
O_{1}	1	2	1	4	$\mathbf{3 0}$
O_{2}	3	3	2	1	$\mathbf{5 0}$
O_{3}	4	2	5	9	$\mathbf{2 0}$
Demand	$\mathbf{2 0}$	$\mathbf{4 0}$	$\mathbf{3 0}$	$\mathbf{1 0}$	

Continued...

From	D_{1}	D_{2}	D_{3}	D_{4}	Supply
O_{1}	1	2	301	4	30
O_{2}	${ }^{20} 3$	203	2	-1	50
O_{3}	4	${ }^{20} 2$	5	9	20
Demand	20	40	30	10	

Vegel's Approximation Method (VAM)

Compute a penalty for each row and column in the transportation table. The penalty for a given row and column is merely the difference between the smallest cost and next smallest cost in that particular row or column.
2. Identify the row or column with the largest penalty. In this identified row or column, choose the cell which has the smalles cost and allocate the maximum possible quantity to the lowest
cost cell in that row or column so as to exhaust either the supply at a particular source or satisfy demand at warehouse (if a tie occurs in the penalties, select that row/column which has minimum cost. If there is a tie in the minimum cost also, select the row/column which will have maximum possible assignments).

Continued...

Example 3

Obtain initial solution of the following transportation problem by using Vogel's Approximation method

To From	D_{1}	D_{2}	D_{3}	D_{4}	Supply
O_{1}	1	2	1	4	$\mathbf{3 0}$
O_{2}	3	3	2	1	$\mathbf{5 0}$
O_{3}	4	2	5	9	$\mathbf{2 0}$
Demand	$\mathbf{2 0}$	$\mathbf{4 0}$	$\mathbf{3 0}$	$\mathbf{1 0}$	

Continued...

	D_{1}	D_{2}	D_{3}	D_{4}	Supply	
O_{1}	${ }^{20} 1$	2	${ }^{\text {® }}$	4	30	(0) (0) (0) (1) *
O_{2}	3	${ }^{20} 3$	${ }^{\text {® }} 2$	${ }^{10} 1$	50	(1) (1) (1) (1) (1) $^{(1)}$
O_{3}	4	${ }^{20} 2$	5	9	20	(2) (2) * *
Demand	20	40	30	10		
	(2) (2) (2) \vdots \vdots .	$\begin{aligned} & \text { (0) } \\ & (0) \\ & (1) \\ & (1) \\ & (1) \\ & (1) \end{aligned}$	(1) (1) (1) (1) (1) (1)	(3) \vdots \vdots $*$		

Optimality Test

The Modified Distribution Method

Determine an initial basic feasible solution consisting of $(m+n-1)$ allocations using any of the three methods.
2. Determine a set of numbers $u_{\mathrm{i}}(\mathrm{i}=1,2, . . \mathrm{m})$ for each row and $v_{\mathrm{i}}(\mathrm{j}=$ $1,2 . . n$) for each column. Calculate $c_{\mathrm{ij}}=\left(u_{\mathrm{i}}+v_{\mathrm{j}}\right)$ for occupied cells In practice, this is done by choosing the u_{i} or v_{j} value as zero corresponding to the row or column containing maximum number of occupied cells.
3. Compute the opportunity cost $\Delta_{\mathrm{ij}}=C_{\mathrm{ij}}-\left(U_{\mathrm{i}}+V_{\mathrm{j}}\right)$ for each unoccupied cells.

Continued...

4. Check the sign of each opportunity cost:

If all the Δ_{i} are positive or zero, then the solution is optimum. If one of the values is zero then there exists an alterative solution for the same transportation cost. If any value is negative, then the given solution is not optimum \& further improvement is possible.
5. Select the unoccupied cell with the largest negative opportunity cost as the cell to be included in the next solution.
6. Draw a closed path or loop for the unoccupied cells selected in step 5. It may be noted that right angle turns in this path are permitted only at occupied cells and at the unoccupied cells.

Continued...

Continued...

Example 3: Continued...

	D_{1}	D_{2}	D_{3}	D_{4}	Supply	${ }^{u_{1}}$
O_{1}	${ }^{20} 1$	2	0_{1}	4	$\mathbf{3 0}$	${ }^{-1}$
O_{2}	3	$\left.{ }^{20}\right]_{3}$	${ }^{-20} 2$	0_{1}	$\mathbf{5 0}$	0
O_{3}	4	2	5	9	$\mathbf{2 0}$	${ }^{-1}$
Demand	$\mathbf{2 0}$	$\mathbf{4 0}$	$\mathbf{3 0}$	$\mathbf{1 0}$		
v_{i}	2	3	2	1		

8. Determine the maximum number of units that should be shipped to this unoccupied cell. The smallest one with a negative sign on the closed path indicates the number of units that can be shipped to closed path indicates the number of units that can be shipped to
the entering cell. This quantity is added to all the cells on the path the entering cell. This quantity is added to all the cells on the path
marked with plus sign and subtracted from those cells marked with minus sign. In this way, the unoccupied cell under consideration becomes an occupied cell making one of the occupied cells as unoccupied cell.
9. Repeat the whole procedure until an optimum solution is found i.e., Δ_{ij} are positive or zero. Finally, calculate new transportation cost.

Continued...

	D_{1}	D_{2}	$\mathrm{D}_{3} \mathrm{D}_{4}$		
O_{1}	${ }^{\text {W1 }}$	${ }^{\circ} 2$	${ }_{1}$	4	${ }^{-1}$
O_{2}	3	ए3	W2	${ }^{1}$	0
O_{3}	3 4	ए2	9	9	-1
v_{1}	2	3	2	1	

Here all Δ_{ij} are greater than or equal to zero. Hence the solution is optimum. Optimum solution is $\mathrm{x}_{11}=20, \mathrm{x}_{13}=10, \mathrm{x}_{22}=20$, $x_{23}=20, x_{24}=10, x_{32}=20 \&$ minimum cost is 120 .

Example 4

Solve the following transportation problem by using Vogel's Approximation method

To	D_{1}	D_{2}	D_{3}	Supply
From				
O_{1}	6	8	4	14
O_{2}	4	9	3	12
O_{3}	1	2	6	5
Demand	6	10	15	31

Continued...

Continued...

Continued...

Continued...

$\operatorname{Min}\{1,12\}=1$

Continued...

Degeneracy in TP

- If at every initial stage or in any subsequent iteration the number of allocations be less than ($m+n-1$) then we have a case of degeneracy.
- To resolve this case, we allocate a very small positive quantity epsilon to one or more (as many required) of the empty cells (lowest cost cells) and consider these cells to be the occupied cells. With this choice of epsilon, the original problem is not changed. Epsilon is considered as a real positive allocation as long as is required. Finally, it will be omitted.

Example 5

Solve the following transportation problem by using Vogel's Approximation method:

To From	D_{1}	D_{2}	D_{3}	Supply
O_{1}	8	7	3	$\mathbf{6 0}$
O_{2}	3	8	9	$\mathbf{7 0}$
O_{3}	11	3	5	$\mathbf{8 0}$
Demand	$\mathbf{5 0}$	$\mathbf{8 0}$	$\mathbf{8 0}$	

Continued...

	D_{1}	D_{2}	D_{3}	Supply
O_{1}	8	7	W	60
O_{2}	『 3	8	20 9	70
O_{3}	11	匈3	5	80
Demand	50	80	80	

Continued...

Continued...

Continued...

Here all Δ_{ij} are greater than zero. Hence the solution is optimum. Optimum solution is $\mathrm{x}_{13}=60, \mathrm{x}_{21}=50, \mathrm{x}_{23}=20$, $\mathrm{x}_{32}=80 \&$ minimum cost is 750 .

Special Cases in TP

- Unbalanced TP
- Maximizing TP
- No allocation in a particular cell
- Some positive allocation in a particular cell

Unbalanced TP

In a TP, if the sum of available resources is not equal to sum of demands then the TP is known as an unbalanced TP.

$$
\sum_{i=1}^{m} a_{i} \neq \sum_{j=1}^{n} b_{j}
$$

Example

Maximizing TP

Solve the following unbalanced TP:

No allocation in a particular cell

If there is no allocation in a particular cell then it indicates that the rout corresponding to that particular cell from the source to destination is prohibited. In such a case, a large positive cost is assigned to that cell so that no allocation will be made on that cell. The solution procedure remains same.

Some positive allocation in a particular cell

If it is necessary to allocate a given quantity in a particular cell then adjust the availability \& requirements accordingly \& solve the remaining part of the problem in the usual manner.

Example

Solve the following TP. Given that 8 units must be assigned to $(3,3)$ cell.

