

Lecture Outline

- What is simulation?
- Why simulation to OR problems?
- Random number generation
- Monte Carlo simulation
- Areas of simulation application

What is Simulation?

- Mathematical and computer modeling technique for replicating real-world problem situations
- Modeling approach primarily used to analyze probabilistic problems
- The imitation of the operation of a real-world process or system over time...
 - Most widely used tool for decision making
 - Usually on a computer with appropriate software
 - An analysis (descriptive) tool can answer what if questions
 - A synthesis (prescriptive) tool if complemented by other tools
- Applied to complex systems that are impossible to solve mathematically
- Simulation does not normally provide a solution. It provides information that is used to make a decision

Why Simulation?

· No closed form expression of the physical system

Actual observation of a system is expensive and time

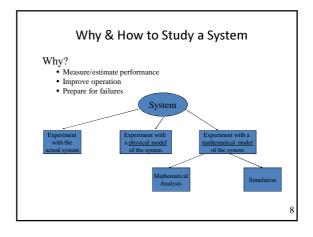
• Not possible to find an analytic solution

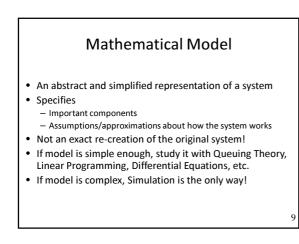
consuming

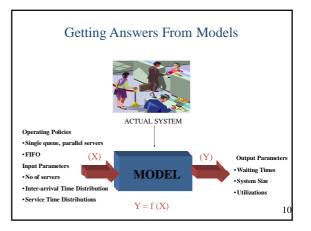
3

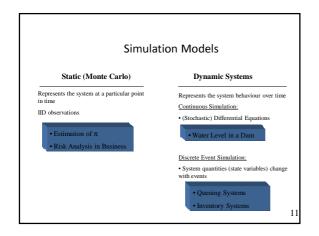
5

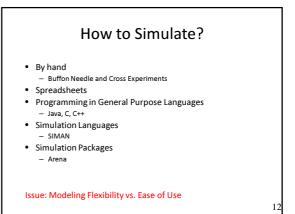
Simulation: A Brief Definition


Simulation is defined to be a method that utilizes sequences of random numbers as data. It is an extremely useful tool in situations where no closed form expression of a system is available or too complex to get.


Applications


Manufacturing facility Bank operation Airport operations (passengers, security, planes, crews, baggage) Transportation/logistics/distribution operation Hospital facilities (emergency room, operating room, admissions) Computer network Business process (insurance office) Chemical plant Fast-food restaurant Supermarket Theme park


What is a System?


- A set of interacting components or entities operating together to achieve a common goal or objective.
- Examples
 - A manufacturing system with its machine centres, inventories, production schedule, items produced.
 - A telecommunication system with its messages, communication network servers.
 - A theme park with rides, workers, etc.

Advantages of Simulation

- When mathematical analysis methods are not available, simulation may be the only investigation tool
- When mathematical analysis methods are available, but are so complex that simulation may provide a simpler solution
- Allows comparisons of alternative designs or alternative operating policies
- Allows time compression or expansion

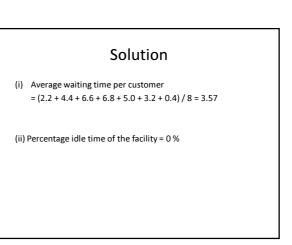
Disadvantages of Simulation

- For a stochastic model, simulation estimates the output while an analytical solution, if available, produces the exact output
- Often expensive and time consuming to develop
- An invalid model may result with confidence in wrong results.

Example

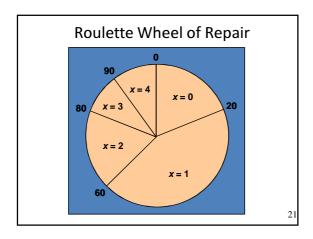
13

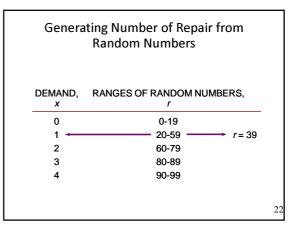
Customers arrive at a milk booth for requires service. Assume that inter-arrival time and service time are constant and given by 1.8 and 4 time units, respectively. Simulate the system by hand computations for 14 time units. Assuming that the system starts at time t = 0,

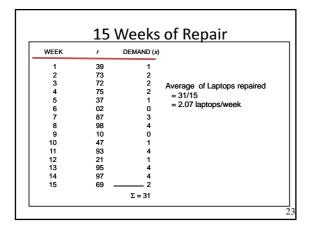

- (i) find the average waiting time per customer.
- (ii) find the percentage idle time of the facility?

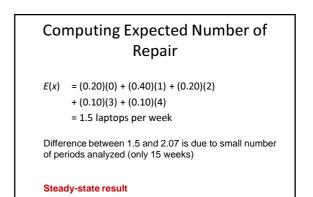
Solution

- A : event of arrival of one customer D : event of departure of one customer
- Since the system starts at time t = 0, the first customer avails service without any delay.
- The next customer arrives into the system at time t = 0 + 1.8 = 1.8
- The first customer departs the system t = 0 + 4 = 4


We present the system in the form of a table.


Solution								
	Time	Event	Customer	Waiting Time				
	0.0	Α	1					
	1.8	Α	2					
	3.6	Α	3					
	4.0	D	1	4 – 1.8 = 2.2 (Customer 2)				
	5.4	Α	4					
	7.2	Α	5					
	8.0	D	2	8 – 3.6 = 4.4 (Customer 3)				
	9.0	Α	6					
	10.8	Α	7					
	12.0	D	3	12 – 5.4 = 6.6 (Customer 4)				
	12.6	Α	8					
	14.0	END		14 – 7.2 = 6.8 (Customer 5) 14 – 9.0 = 5.0 (Customer 6) 14 – 10.8 = 3.2 (Customer 7) 14 – 13.6 = 0.4 (Customer 8)				




			Ex	kam	ple			
provide	es repa	ir ser	vice u	nder wa	rranty	period	aptops a d. The we ncy distrib	eekly
Deman	d (x):	0	1	2	3	4		
Freque	ncy:	20	40	20	10	10		
	ne foll	owin	g rando	om num	bers			
Using t					-			
Using t	39		73	72		75	37	
Using t	39 02		73 87	72 98	-	75 LO	37 47	

LAPTOPS REPAIRED PER WEEK, <i>x</i>	FREQUENCY OF REPAIR	PROBABILITY OF REPAIR, <i>P</i> (<i>x</i>)
0	20	0.20
1	40	0.40
2	20	0.20
3	10	0.10
4	10	0.10
	100	1.00

