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What is the Simplex Method?What is the Simplex Method?

� A method (algorithm) to solve linear programs
� Analogies
� Gaussian elimination is a method for solving a system of 

linear equations
� There are various ways to do sorting and searching with 

data

� Why the Simplex method?
� Very efficient in practice
� Easy to implement
� Time proven

� When decision variables are more than 2, it is always advisable 
to use Simplex Method to avoid lengthy graphical procedure.

� The simplex method is not used to examine all the feasible 
solutions.

� It deals only with a small and unique set of feasible solutions, the 
set of vertex points (i.e., extreme points) of the convex feasible 
space that contains the optimal solution.

The simplex method is a method for searching corner point 
feasible solutions

The Simplex MethodThe Simplex Method
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Procedure of Simplex MethodProcedure of Simplex Method

� Locate an extreme point of the feasible region

� Examine each boundary edge intersecting at this point to 
see whether movement along any edge increases the value 
of the objective function

� If the value of the objective function increases along any 
edge, move along this edge to the adjacent extreme point. If 
several edges indicate improvement, the edge providing the 
greatest rate of increase is selected

� Repeat second & third steps above until movement along 
any edge no longer increases the value of objective function
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Geometric InterpretationGeometric Interpretation

�The Simplex method starts at a corner-point feasible
solution (usually the origin) and moves to adjacent CP 
solutions along edges until an optimal solution is found.

� A CPF solution is connected to adjacent CPF solutions by
edges 

� In a problem with n decision variables, each CPF solution 
will have n edges emanating from it 
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Continued…Continued…

� A CPF solution lies at the intersection of n constraint       
boundaries.

� By relaxing a single constraint boundary equation (i.e.   
equality for the constraint is relaxed) an edge is defined 
which leads to an adjacent CPF solution.

� The simplex method defines 
� How to choose which edge to traverse. 
� When to stop or how to determine that a CPF solution is optimal
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Identifying Solution Type Identifying Solution Type 
Using Simplex MethodUsing Simplex Method

� If there is a bounded feasible region
� If there is exactly one optimal solution, then it can 

find the solution efficiently
� If there are multiple optimal solutions, then it can 

identify the case & can find all solutions

� If no bounded feasible region exists –
can identify
� Unbounded feasible region
� No feasible region
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TerminologyTerminology

� Basic Variable

� Non-basic Variable
� Slack Variable

� Surplus Variable

� Artificial Variable
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LPP in Vector NotationsLPP in Vector Notations

Maximize Z = cx

subject to
Ax = b, x ≥ 0

where c = (c1, c2, …, cj, …, cn) 
x = (x1, x2, …, xj, …, xn)T

A = (a1, a2, …, aj, …, an) 
b = (b1, b2, …, br…, bm)T
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NotationsNotations

aj = a column vector whose elements are 
coefficients of xj in A

B = initial basis containing m-columns of A
xB = initial basic feasible solution
b = requirement vector
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Objective Value & Objective Value & ZZjj

� Objective value 
Z = cB xB = cB1 xB1 + cB2 xB2 + …  + cBm xBm

� The Quantity Zj

zj = cB aj = cB1 a1j + cB2 a2j + …  + cBm amj
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Net Evaluation: CharacteristicsNet Evaluation: Characteristics

� Net evaluation
zj – cj = cB aj - cj= cB1 a1j + cB2 a2j + …  + cBm amj – cj

� Optimality condition: zj - cj ≥ 0 

� Unbounded solution: zj - cj ≤ 0  and aij ≤ 0 

12
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Continued…Continued…

� Alternate optimal solution 

zj - cj = 0 for some non-basic variable & aij ≥ 0 
for at least one i

� No feasible solution

If at any stage of the simplex method the optimality 
condition is satisfied and still at least one artificial 
variable remains in the basis at the positive level, then 
the LPP has no feasible solution. 13

Entering & Departing Vector Rules 
(maximization problem)

� Entering Vector Rule (1):

xk will enter the basis based on the condition: 

zk - ck = Minj { zj - cj | zj - cj ≤ 0 }

� Departing Vector Rule (2):
xr will leave the basis based on the condition: 

Mini { xBi / aij | aij ≥ 0 }
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Initial Simplex TableInitial Simplex Table

ccccjjjj cccc1111 cccc2222 ………… ccccnnnn

ccccBBBB xxxxBBBB bbbb xxxx1111 xxxx2222 ………… xxxxnnnn

ccccB1B1B1B1 xxxxB1B1B1B1 bbbb1111 aaaa11111111 aaaa12121212 ………… aaaa1n1n1n1n

ccccB2B2B2B2 xxxxB2B2B2B2 bbbb2222 aaaa21212121 aaaa22222222 ………… aaaa2n2n2n2n

………… ………… ………… ………… ………… ………… …………

ccccBmBmBmBm xxxxBmBmBmBm bbbbmmmm aaaam1m1m1m1 aaaam2m2m2m2 ………… aaaamnmnmnmn

zzzzjjjj –––– ccccjjjj zzzz1111 –––– cccc1111 zzzz2222 ––––cccc2222 ………… zzzznnnn –––– ccccnnnn

15zj – cj = cB aj - cj= cB1 a1j + cB2 a2j + …  + cBm amj - cj

Simplex Algorithm Simplex Algorithm 
(for a maximization problem)(for a maximization problem)

� Step 1: If the given LPP is of minimization type, then 
convert it to a maximization type problem.

� Step 2: If any of the components of the requirement 
vector is negative, multiply the corresponding 
constraint by (-1) and adjust the direction of inequality. 
If the constraint is an equality then multiply it by (-1) 
only.

� Step 3: Add slack, surplus & artificial variables to the 
constraints according to their requirement. 
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Continued…Continued…

� Step 4: Assign coefficients of slack & surplus variable 
as 0, and (-M) for artificial variables in the changed 
objective function.

� Step 5: Construct the simplex table by choosing the 
initial basic feasible solution.

� Step 6: Check the optimality of solution. If all 
(zj - cj ≥ 0 ), then the present solution is optimal.

� Step 7: If for at least one aj , zj - cj ≤ 0  and aij ≤ 0 then 
the problem has unbounded solution and stop there.
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Continued…Continued…

� Step 8: Choose the entering vector according to Rule 
1. In case of tie, chose any one arbitrarily.

� Step 9: Choose the departing vector according to Rule 
2. In case of tie, chose any one arbitrarily.

� Step 10: Form the new basis by dropping the departing 
variable and introducing the new variable. Convert the 
key element to unity and all other elements in its 
column to zero.

� Step 11: Go to Step 6 and repeat the procedure until 
either an optimum solution is obtained or there is an 
indication of unbounded solution. 18
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LPP: Example 1LPP: Example 1
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Max Z = x1 + x2 + 3x3 

subject to

3x1 + 3x2 + x3  ≤ 3
2x1 + x2 + 2x3 ≤ 2
x1 , x2, x3 ≥ 0

LPP: Example 1LPP: Example 1

Max Z = x1 + x2 + 3x3 + 0.s1 + 0.s2 

subject to

3x1 + 3x2 + x3 + 1.s1 + 0.s2 = 3
2x1 + x2 + 2x3 + 0.s1 + 1.s2 = 2
x1, x2, x3, s1, s2 ≥ 0
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LPP: Example 1LPP: Example 1

Table 1Table 1
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cj 1 1 3 0 0

cB xB b x1 x2 x3 s1 s2

0 s1 3 3 3 1 1 0

0 s2 2 2 1 0 1

zj – cj -1 -1 -3 0 0

2

LPP: Example 1LPP: Example 1

Table 2Table 2

Optimum solution: xOptimum solution: x11 = x= x22 = 0, x= 0, x33 = 1, max Z = 3= 1, max Z = 3
22

cj 1 1 3 0 0

cB xB b x1 x2 x3 s1 s2

0 s1 2 2 5/2 0 1 -1/2

3 x3 1 1 1/2 1 0 1/2

zj – cj 2 1/2 0 0 3/2

LPP: Example 2LPP: Example 2
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Max Max ZZ = = 22xx11 + 3+ 3xx2  2  

subject subject toto

xx11 + + xx2  2  ≤ ≤ 88
xx11 + 2+ 2xx2 2 ==  55
22xx11 + + xx2  2  ≤ ≤ 88
xx1 1 , , xx22 ≥ ≥ 00

LPP: Example 2LPP: Example 2

Max Z = 2x1 + 3x2  + 0.s1 - M.s2 + 0.s3

subject to

x1 + x2  + 1.s1 + 0.s2 + 0.s3 = 8
x1 + 2x2 + 0.s1 + 1.s2 + 0.s3 = 5
2x1 + x2 + 0.s1 + 0.s2 + 1.s3 = 8
x1, x2, s1, s2, s3 ≥ 0

24
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LPP: Example 2LPP: Example 2

Table 1Table 1
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cj 2 3 0 -M 0

cB xB b x1 x2 s1 s2 s3

0 s1 8 1 1 1 0 0

-M s2 5 1 0 1 0

0 s3 8 2 1 0 0 1

zj – cj -M-2 -2M-3 0 0 0
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LPP: Example 2LPP: Example 2

Table 2Table 2
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cj 2 3 0 -M 0

cB xB b x1 x2 s1 s2 s3

0 s1 11/2 1/2 0 1 … 0

3 x2 5/2 1/2 1 0 … 0

0 s3 11/2 0 0 … 1

zj – cj -1/2 0 0 … 0

3/2

LPP: Example 2LPP: Example 2

Table 3Table 3

Optimum solution: xOptimum solution: x11 = 11/3, x= 11/3, x22 = 2/3, max Z = 28/3= 2/3, max Z = 28/3 27

cj 2 3 0 -M 0

cB xB b x1 x2 s1 s2 s3

0 s1 11/3 0 0 1 … -1/3

3 x2 2/3 0 1 0 … -1/3

2 x1 11/3 1 0 0 … 2/3

zj – cj 0 0 0 … 1/3

Additional ProblemsAdditional Problems
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Max Z = 5x1 + 3x2 

s. t. 3x1 + 5x2  ≤ 15
5x1 + 2x2 ≤ 10
x1 , x2 ≥ 0

( x1 = 20/19, x2 = 45/19
Objective value = 235/19)

Max Z = 5x1 - 2x2  + 3x3

s. t.       2x1 + 2x2 - x3 ≥ 2
3x1 - 4x2 ≤ 3

x2 + 3x3 ≤ 5
x1 , x2 , x3 ≥ 0

( x1 = 23/3, x2 = 5, x3 = 0
Objective value = 85/3)

Min Z = x1 + x2  + x3

s. t.       x1 - x2 + 2x3 = 2
-x1 + 2x2 - x3 = 1
x1 , x2 , x3 ≥ 0

( x1 = 0, x2 = 4/3, x3 = 5/3
Objective value = 3)

Min Z = x1 - 3x2  + 2x3

s. t.       3x1 - x2 + 2x3 ≤ 7
-2x1 + 4x2    ≤12

-4x1 + 3x2 + 8x3 ≤10
x1 , x2 , x3 ≥ 0

( x1 = 4, x2 = 5, x3 = 0
Objective value = -11)

Continued…Continued…
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Max Z = x1 - x2  + 2x3

s. t.       -x1 + x2 + 2x3 ≤ 5
-2x1 + 5x2 - x3 ≥ 10
2x1 - x2 + x3 ≥ 4
x1 , x2 , x3 ≥ 0

( Unbounded solution)

Min Z = x1 - 2x2  - 3x3

s. t.       -2x1 + x2 + 3x3 = 2
2x1 + 3x2 + 4x3 = 1
x1 , x2 , x3 ≥ 0

( No feasible solution)
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Negative VariablesNegative Variables

In some formulations it makes sense to have negative
values allowed for some decision variables (e.g., rate reductions, 
distance relative to an origin, etc.)

Two cases: Bounded, unbounded

� Bounded
xj >= Lj where Lj < 0

Replace xj with xj’ where xj’ = xj – Lj, and xj’ >=0

� Unbounded 
Replace xj with xj

+- xj
- where xj

+ and xj
- >=0
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ExamplesExamples
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ExamplesExamples
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Unbounded: replace xj with xj
+- xj

- where xj+ and xj- >=0
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