Simplex Method

RK Jana

The Simplex Method

* When decision variables are more than 2 , it is always advisable to use Simplex Method to avoid lengthy graphical procedure.
* The simplex method is not used to examine all the feasible solutions.
\& It deals only with a small and unique set of feasible solutions, the set of vertex points (i.e., extreme points) of the convex feasible space that contains the optimal solution.

The simplex method is a method for searching corner point feasible solutions

What is the Simplex Method?

- A method (algorithm) to solve linear programs
- Analogies
- Gaussian elimination is a method for solving a system of
linear equations
- There are various ways to do sorting and searching with data
-Why the Simplex method?
- Very efficient in practice
- Easy to implement
- Time proven

Procedure of Simplex Method

- Locate an extreme point of the feasible region
- Examine each boundary edge intersecting at this point to see whether movement along any edge increases the value of the objective function
- If the value of the objective function increases along any edge, move along this edge to the adjacent extreme point. If several edges indicate improvement, the edge providing the greatest rate of increase is selected
- Repeat second \& third steps above until movement along any edge no longer increases the value of objective function

Geometric Interpretation

Continued...

- A CPF solution lies at the intersection of n constraint boundaries.
- By relaxing a single constraint boundary equation (i.e. equality for the constraint is relaxed) an edge is defined which leads to an adjacent CPF solution.
- The simplex method defines
- How to choose which edge to traverse.
- When to stop or how to determine that a CPF solution is optimal

Identifying Solution Type
 Using Simplex Method

- If there is a bounded feasible region
- If there is exactly one optimal solution, then it can find the solution efficiently
- If there are multiple optimal solutions, then it can identify the case \& can find all solutions
- If no bounded feasible region exists can identify
- Unbounded feasible region
- No feasible region

Terminology

- Basic Variable
- Non-basic Variable
- Slack Variable
- Surplus Variable
- Artificial Variable

LPP in Vector Notations

Maximize $Z=c x$
subject to
$A x=b, x \geq 0$
where $\quad c=\left(c_{1}, c_{2}, \ldots, c_{j}, \ldots, c_{n}\right)$
$x=\left(x_{1}, x_{2}, \ldots, x_{j}, \ldots, x_{n}\right)^{T}$
$A=\left(a_{1}, a_{2}, \ldots, a_{j}, \ldots, a_{n}\right)$
$b=\left(b_{1}, b_{2}, \ldots, b_{r} \ldots, b_{m}\right)^{T}$

Notations

$a_{i}=$ a column vector whose elements are coefficients of x_{j} in A
$B=$ initial basis containing m-columns of A
$\mathrm{x}_{B}=$ initial basic feasible solution
$b=$ requirement vector

Objective Value \& Z_{j}

- Objective value
$Z=c_{B} x_{B}=c_{B 1} x_{B 1}+c_{B 2} x_{B 2}+\ldots+c_{B m} x_{B m}$
- The Quantity Z_{j}
$z_{j}=c_{B} a_{j}=c_{B 1} a_{1 j}+c_{B 2} a_{2 j}+\ldots+c_{B m} a_{m j}$

Net Evaluation: Characteristics

- Net evaluation
$z_{j}-c_{j}=c_{B} a_{j}-c_{j}=c_{B 1} a_{1 j}+c_{B 2} a_{2 j}+\ldots+c_{B m} a_{m j}-c_{j}$
- Optimality condition: $z_{j}-c_{j} \geq 0$
- Unbounded solution: $z_{j}-c_{j} \leq 0$ and $\mathrm{a}_{i j} \leq 0$

Continued...

- Alternate optimal solution

$z_{j}-c_{j}=0$ for some non-basic variable $\& \mathrm{a}_{i j} \geq 0$ for at least one i

- No feasible solution

If at any stage of the simplex method the optimality condition is satisfied and still at least one artificial variable remains in the basis at the positive level, then the LPP has no feasible solution.

Entering \& Departing Vector Rules (maximization problem)

- Entering Vector Rule (1):
x_{k} will enter the basis based on the condition:

$$
z_{k}-c_{k}=\operatorname{Min}_{j}\left\{z_{j}-c_{j} \mid z_{j}-c_{j} \leq 0\right\}
$$

- Departing Vector Rule (2):
x_{r} will leave the basis based on the condition:

$$
\operatorname{Min}_{i}\left\{x_{B i} / a_{i j} / a_{i j} \geq 0\right\}
$$

Initial Simplex Table

		c_{j}	c_{1}	c_{2}	\ldots	c_{n}
c_{B}	x_{B}	b	x_{1}	x_{2}	\ldots	x_{n}
$c_{B 1}$	$x_{B 1}$	b_{1}	a_{11}	a_{12}	\ldots	$a_{1 n}$
$c_{B 2}$	$x_{B 2}$	b_{2}	a_{21}	a_{22}	\ldots	$a_{2 n}$
\ldots						
$c_{B m}$	$x_{B m}$	b_{m}	$a_{m 1}$	$a_{m 2}$	\ldots	$a_{m n}$
$z_{j}-c_{j}$						

$z_{j}-c_{j}=c_{B} a_{j}-c_{j}=c_{B 1} a_{l j}+c_{B 2} a_{2 j}+\ldots+c_{B m} a_{m j}-c_{j}$

Simplex Algorithm (for a maximization problem)

- Step 1: If the given LPP is of minimization type, then convert it to a maximization type problem.
- Step 2: If any of the components of the requirement vector is negative, multiply the corresponding constraint by (-1) and adjust the direction of inequality. If the constraint is an equality then multiply it by (-1) only.
- Step 3: Add slack, surplus \& artificial variables to the constraints according to their requirement.

Continued...

- Step 4: Assign coefficients of slack \& surplus variable as 0 , and ($-M$) for artificial variables in the changed objective function.
- Step 5: Construct the simplex table by choosing the initial basic feasible solution.
- Step 6: Check the optimality of solution. If all $\left(z_{j}-c_{j} \geq 0\right)$, then the present solution is optimal.
- Step 7: If for at least one $\mathrm{a}_{j}, z_{j}-c_{j} \leq 0$ and $\mathrm{a}_{i j} \leq 0$ then the problem has unbounded solution and stop there.

Continued...

- Step 8: Choose the entering vector according to Rule 1. In case of tie, chose any one arbitrarily.
- Step 9: Choose the departing vector according to Rule 2. In case of tie, chose any one arbitrarily.
- Step 10: Form the new basis by dropping the departing variable and introducing the new variable. Convert the key element to unity and all other elements in its column to zero
- Step 11: Go to Step 6 and repeat the procedure until either an optimum solution is obtained or there is an indication of unbounded solution.

LPP: Example 1

$\operatorname{Max} Z=x_{1}+x_{2}+3 x_{3}$
subject to
$3 x_{1}+3 x_{2}+x_{3} \leq 3$
$2 x_{1}+x_{2}+2 x_{3} \leq 2$
$x_{1}, x_{2}, x_{3} \geq 0$

LPP: Example 1

$\operatorname{Max} Z=x_{1}+x_{2}+3 x_{3}+0 . s_{1}+0 . s_{2}$
subject to
$3 x_{1}+3 x_{2}+x_{3}+1 . s_{1}+0 . s_{2}=3$
$2 x_{1}+x_{2}+2 x_{3}+0 . s_{1}+1 . s_{2}=2$
$x_{1}, x_{2}, x_{3}, s_{1}, s_{2} \geq 0$

LPP: Example 1

Table 1

LPP: Example 1

Table 2

		c_{j}	1	1	3	0	0
c_{B}	x_{B}	b	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}
0	s_{1}	2	2	5/2	0	1	-1/2
3	x_{3}	1	1	1/2	1	0	1/2
$z_{j}-c_{j}$			2	1/2	0	0	3/2

Optimum solution: $x_{1}=x_{2}=0, x_{3}=1, \max Z=3$

LPP: Example 2

$\operatorname{Max} Z=2 x_{1}+3 x_{2}$
subject to

$$
\begin{aligned}
& x_{1}+x_{2} \leq 8 \\
& x_{1}+2 x_{2}=5 \\
& 2 x_{1}+x_{2} \leq 8 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

LPP: Example 2

$\operatorname{Max} Z=2 x_{1}+3 x_{2}+0 . s_{1}-\mathrm{M} . s_{2}+0 . s_{3}$
subject to
$x_{1}+x_{2}+1 . s_{1}+0 . s_{2}+0 . s_{3}=8$
$x_{1}+2 x_{2}+0 . s_{1}+1 . s_{2}+0 . s_{3}=5$
$2 x_{1}+x_{2}+0 . s_{1}+0 . s_{2}+1 . s_{3}=8$
$x_{1}, x_{2}, s_{1}, s_{2}, s_{3} \geq 0$

LPP: Example 2

Table 2

LPP: Example 2

Table 3

		c_{j}	2	3	0	-M	0
C_{B}	x_{B}	b	x_{1}	x_{2}	s_{1}	s_{2}	5_{3}
0	s_{1}	11/3	0	0	1	\cdots	-1/3
3	x_{2}	2/3	0	1	0	...	-1/3
2	x_{1}	11/3	1	0	0	...	2/3
$z_{j}-\mathrm{c}_{\mathrm{j}}$			0	0	0	...	1/3

Additional Problems

Continued...

Negative Variables

In some formulations it makes sense to have negative
values allowed for some decision variables (e.g., rate reductions, distance relative to an origin, etc.)

Two cases: Bounded, unbounded

- Bounded
$x_{i}>=L_{i}$ where $L_{i}<0$
Replace x_{j} with x_{j}^{\prime} where $x_{j}^{\prime}=x_{j}-L_{j}$, and $x_{j}^{\prime}>=0$
- Unbounded

Replace x_{j} with $\mathrm{x}_{\mathrm{j}}{ }^{+} \mathrm{x}_{\mathrm{j}}{ }^{-}$where $\mathrm{x}_{\mathrm{j}}^{+}$and $\mathrm{x}_{\mathrm{j}}>=0$

