Assignment Problems

RK Jana

Some Examples

- Assign people to project assignments
- Assign jobs to machines
- Assign products to plants
- Assign tasks to time slots

The Assignment Problem

Consider the problem of assigning n assignees to n tasks. Only one task can be assigned to an assignee, and each task must be assigned.

There is also a cost associated with assigning an assignee i to task j, c_{ij}.

The objective is to assign all tasks such that the total cost is minimized.

Assumptions in AP

- The number of assignees and the number of tasks are the same (denoted by n).
- Each assignee is to be assigned to exactly one task.
- Each task is to be assigned to exactly one assignee.
- There is a cost $c_{i j}$ associated with assignee i performing task j.
- The objective is to determine how all n assignments should be made to minimize the total cost.

The Cost Matrix in AP

Let the following represent the standard assignment problem cost matrix, \mathbf{c} :

LP Formulation

Minimize

$$
Z=\sum_{i=1}^{m} \sum_{j=1}^{n} c_{i j} x_{i j}
$$

s.t.
$\sum_{j=1}^{n} x_{i j}=1 \forall i$
$\sum_{i=1}^{n} x_{i j}=1 \forall j$
$x_{i j} \geq 0$
$\left(x_{i j}=0\right.$ or $1, \forall i$ and $\left.j\right)$

The Hungarian Method

Step 1: Find the minimum element in each row. Construct a new matrix by subtracting from each cost the minimum cost in its row. For this new matrix, find the minimum cost in each column. Construct a new matrix by subtracting from each cost the minimum cost in its column.

Step 2: Draw the minimum number of horizontal and/or vertical lines to cover all the zeros of the reduced cost matrix
(a) If number of lines drawn are equal to the order of the cost
matrix, then the optimal assignment is reached. Go to Step 3.
(b) If number of lines drawn are less than order of the cost matrix, then go to Step 4.

Continued...

- Step 3: Examine all rows containing only one zero. Mark this zero with a box as an assignment will be made there. Perform similar operation in columns. There will be only one zero in each row $\&$ each column. Obtain the optimal assignment \& corresponding minimum cost.
- Step 4: Find the smallest nonzero element (say, its value is k) in the reduced cost matrix that is uncovered by the lines drawn in Step 2. Subtract k from each uncovered element of the matrix and add k to each element that is covered by two lines. Return to step 2.

Continued...

		Job 1	Job 2	Job 3	Job 4
Machine 1	-		0	3	0
Machine 2		0	10	4	1
Machine 3		4	5	0	4
Machine 4		0	2	4	6

Continued...

- Find the smallest nonzero element (say, k) in the reduced cost matrix that is uncovered by the lines. Subtract k from each uncovered element, and add k to each element that is covered by two lines.

Continued...

		Job 1	Job 2	Job 3	Job 4
Machine 1		10	0	3	0
Machine 2		0	$\mathbf{9}$	$\mathbf{3}$	$\mathbf{0}$
Machine 3		$\mathbf{5}$	5	0	4
Machine 4		0	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{5}$

Continued...
Continued...

		Job 1	Job 2	Job 3	Job 4
Machine 1		10	$\mathbf{0}$	3	$\mathbf{0}$
Machine 2		$\mathbf{0}$	9	3	$\mathbf{0}$
Machine 3		5	5	$\mathbf{0}$	4
Machine 4		$\mathbf{0}$	1	3	5

Optimal assignment

$$
\begin{gathered}
x_{12}=1, x_{33}=1, x_{41}=1, x_{24}=1 \\
\mathrm{M} 1 \rightarrow \mathrm{~J} 2, \mathrm{M} 2 \rightarrow \mathrm{~J} 4, \mathrm{M} 3 \rightarrow \mathrm{~J} 3, \mathrm{M} 4 \rightarrow \mathrm{~J} 1 \\
\text { Minimum cost }=15 \text { units }
\end{gathered}
$$

Special Cases

Continued...

Special Cases

- Number of assignees exceeds the number of tasks:

$$
\sum_{i} x_{i j} \leq 1 \text { for each assignee } i
$$

Number of tasks exceeds the number of assignees:
Add enough dummy assignees to equalize the number of assignees and the number of tasks
The objective function coefficients for these
new variable would be zero.

